首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spreading Rumors Rapidly Despite an Adversary
Authors:James Aspnes  William Hurwood
Institution:aDepartment of Computer Science, Yale University, New Haven, Connecticut, 06520-8285;bMicroStrategy Inc, 8000 Towers Crescent Drive, Vienna, Virginia, 22182
Abstract:In thecollect problem(M. Saks, N. Shavit, and H. Woll,in“Proceedings of the 2nd ACM–SIAM Symposium on Discrete Algorithms, 1991),nprocessors in a shared-memory system must each learn the values ofnregisters. We give a randomized algorithm that solves the collect problem inO(n log3 n) total read and write operations with high probability, even if timing is under the control of a content-oblivious adversary (a slight weakening of the usual adaptive adversary). This improves on both the trivial upper bound ofO(n2) steps and the best previously known bound ofO(n3/2 log n) steps, and is close to the lower bound of Ω(n log n) steps. Furthermore, we show how this algorithm can be used to obtain a multiuse cooperative collect protocol that isO(log3 n)-competitive in the latency model of Ajtaiet al.(“Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science,” 1994); andO(n1/2 log3/2 n)-competitive in the throughput model of Aspnes and Waarts (“Proceedings of the 28th ACM Symposium on Theory of Computing,” 1996). In both cases the competitive ratios are within a polylogarithmic factor of optimal.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号