首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dansylated aminopropyl controlled pore glass: a model for silica-liquid solvation
Authors:Page Phillip M  Munson Chase A  Bright Frank V
Institution:Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA.
Abstract:We have prepared a series of aminopropyl controlled pore glass (CPG) particles that have been labeled with a solvatochromic fluorescent probe molecule (dansyl). We report on the behavior of the attached dansyl reporter as a function of dansyl-to-amine molar ratio (i.e., dansyl loading), solvent dipolarity, and surface-residue end capping. In these experiments, we systematically adjust the dansyl loading by 10(5); a range much larger than ever explored. The dansylated CPG particles were also end capped with trimethylchlorosilane to derivatize most of the residual silanol and/or aminopropyl groups. The attached dansyl molecules can be surrounded by other dansyl molecules; they can be distributed within an ensemble of sites with differing physicochemical properties, and/or they can be distributed in sites that are restrictive to dansyl motion and/or solvent inaccessible. At high dansyl loadings, the majority of the dansyl groups are solvated by other dansyl moieties and solvent does not significantly alter the local microenvironment surrounding the average dansyl molecule (i.e., the cybotactic region) to any significant level. At intermediate dansyl loadings, the average distance between the dansyl groups increases and solvent is able to access/solvate/wet the dansyl groups and alter their cybotactic region to a greater extent. At the lowest dansyl loadings studied, the results suggest that these dansyl moieties are localized within solvent inaccessible/restrictive SiO2 sites (e.g., small pores).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号