首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Porous agglomerates in the general linear flow field
Authors:Vainshtein P  Shapiro M
Institution:Laboratory of Transport Processes in Porous Materials, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Abstract:We calculate the flow within and around a porous spherical agglomerate suspended in the general linear flow field, and also the flow induced by its rotation. We use the Stokes equations exterior to the particle and the Brinkman equations inside it. The effect of particle permeability on the flow is expressed via the Brinkman parameter beta = r(0)/square root of k, where r0 is particle radius and k is its permeability. With translational creeping motion of porous spheres in a quiet fluid investigated by Debye and Bueche P. Debye, A.M. Bueche, J. Chem. Phys. 16 (6) (1943) 573-579], this study provides information necessary for investigating dynamics of porous particles moving in creeping shear flows under the action of external forces and torques. The agglomerate flow field solutions are used to calculate the effective viscosity of a dilute suspension of porous solid aggregates, which generalizes the well-known Einstein's equation for solid suspensions. The agglomerate effective viscosity diameter is proposed which allows using the Einstein's formula evaluation of the agglomerates suspension viscosity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号