首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photofragmentation of hydrated iron ions Fe(HO) () at 532, 355 and 266 nm
Authors:L Dukan  L del Fabbro  P Pradel  O Sublemontier  JM Mestdagh  JP Visticot
Institution:(1) CEA, DSM/DRECAM/SPAM, Batiment 522, CE Saclay, 91191 Gif-sur-Yvette Cedex, France, FR
Abstract:Photofragmentation of Fe(H2O)n + clusters (n =1-9) is investigated at three different wavelengths, 532, 355 and 266 nm. Two fragmentation pathways are observed depending essentially on the photon energy, but also on the parent size n. The fragmentation products belong to two ion families, Fe(H2O)m + and FeOH(H2O)m + , which correspond to dehydration and intracluster dehydrogenation reactions respectively. The ion yields are studied as a function of the laser fluence in order to determine the number of photons implied in the photofragmentation process. This allows us to estimate that the D(H2O)n-1Fe+-(H2O)] bond energy is ranging between 0.44 eV and 0.55 eV for .Photon absorption cross sections are also derived from the fluence experiments, and two different behaviors are observed: i) At 355 nm, far away from any transition, progressive solvation of the metal ion results in an increasing absorption cross section from n =2 to n =9. This can be attributed to a forbidden transition of bare , which becomes progressively allowed because of the interaction with more and more water ligands. ii) At 266 nm, close to several allowed transitions of bare , a distinct maximum is observed for the absorption of ion. It may be attributed to a change in the spin multiplicity when switching from and on one hand to Fe(H2O) on the other. Received: 11 November 1997 / Revised: 18 February 1998 / Accepted: 22 April 1998
Keywords:PACS  36  40  -c Atomic and molecular clusters - 82  30  -b Specific chemical reactions  reaction mechanisms
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号