首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coarse-Grid-CFD for a Wire Wrapped Fuel Assembly
Authors:Mathias Viellieber  Philipp Dietrich  Andreas G Class
Institution:Institute for Nuclear and Energy Technologies (IKET), Kaiserstrasse 12, 76131 Karlsruhe, Germany
Abstract:Computational fluid dynamics (CFD) simulations of complete nuclear reactor core geometries requires exceedingly large computational resources. However, in most cases there are repetitive geometry- and flow patterns allowing the general approach of creating a parameterized model for one segment and composing many of these reduced models to obtain the entire reactor simulation. Traditionally, this approach lead to so-called subchannel analysis codes that are relying heavily on transport models based on experimental and empirical correlations. With our method, the Coarse-Grid-CFD (CGCFD), we intend to replace the experimental or empirical input with CFD data. Our method is based on detailed and well-resolved CFD simulations of representative segments. From these simulations we extract and tabulate volumetric source terms. Parameterized data is used to close an otherwise strongly under resolved, coarsely meshed model of a complete reactor setup. In the previous formulation only forces created internally in the fluid are accounted for. The Anisotropic Porosity (AP) formulation wich is subject of the present investigation adresses other influences, like obstruction and flow guidance through spacers and in particular geometric details which are under resolved or ignored by the coarse mesh. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号