Chlorinated Organic Compounds Decomposition in a Dielectric Barrier Discharge |
| |
Authors: | M. Magureanu N. B. Mandache V. I. Parvulescu |
| |
Affiliation: | (1) National Institute for Lasers, Plasma and Radiation Physics, Str. Atomistilor 409, P.O. Box MG-34, Bucharest-Magurele, 76900, Romania;(2) Department of Chemical Technology and Catalysis, University of Bucharest, B-dul Regina Elisabeta, 4-12, Bucharest, 030016, Romania |
| |
Abstract: | The decomposition of chlorinated volatile organic compounds by non-thermal plasma generated in a dielectric barrier discharge was investigated. As model compounds trichloroethylene (TCE) and 1,2-dichloroethane (DCE) were chosen. It was found that TCE removal exceeds 95% for input energy densities above 0.2 eV/molecule, regardless of the initial concentration of TCE, in the range 100–750 ppm. On the other hand, DCE was more difficult to decompose, the removal rate reached a maximum of 60% at the highest input energy used. For both investigated compounds the selectivity towards carbon dioxide was significantly influenced by their initial concentration, increasing when low concentrations were used. The gas flow rate had also an effect on CO2 selectivity, which is higher at low flow rate, due to the higher residence time of the gas in the plasma. The best values obtained in these experiments were around 80%. |
| |
Keywords: | Non-equilibrium plasma Dielectric barrier discharge Chlorinated volatile organic compounds Trichloroethylene 1,2-Dichloroethane |
本文献已被 SpringerLink 等数据库收录! |
|