Abstract: | In this paper, a fluorescent aptamer sensor was constructed based on the carbon dots (CDs) and graphene oxide (GO). This sensor combines the excellent fluorescence performance of CDs with the high specificity of aptamer, which can detect progesterone (P4) with high sensitivity and selectivity. In the absence of P4, the CDs-aptamer system and GO form a fluorescence resonance energy transfer process (FRET), which quenches the fluorescence of the CDs. When P4 is added, the aptamer specifically binds to it, resulting the fluorescence of the CDs is recovered. At optimal conditions, the fluorescence intensity recovered by the CDs has a linear relationship with the concentration of P4 in the range of 0.1–120 nM and the detection limit is 3.3?×?10–11 M. Besides, the sensor has satisfactory detection results of P4 in milk, indicating that constructed method has enormous potential for application in food safety. |