首页 | 本学科首页   官方微博 | 高级检索  
     


A near-infrared spectroscopic study of the phosphate mineral pyromorphite Pb5(PO4)3Cl
Authors:Reddy B Jagannadha  Frost Ray L  Palmer Sara J
Affiliation:Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia.
Abstract:Spectral properties as a function composition are analysed for a series of selected pyromorphite minerals of Australian origin. The minerals are characterised by d-d transitions in NIR from 12,000 to 8000 cm(-1) (0.83-1.25 microm). A broad signal observed at approximately 10,000cm(-1) (1.00 microm) is the result of ferrous ion impurity in pyromorphites and follows a relationship between band intensity in the near-infrared spectra and ferrous ion concentration. The iron impurity causes a change in colour from green-yellow to brown in the pyromorphite samples. The observation of overtones of the OH(-) fundamentals, confirms the presence OH(-) in the mineral structure. The contribution of water-OH overtones in the NIR at 5100 cm(-1) (1.96 microm) is an indication of bonded water in the minerals of pyromorphite. Spectra in the mid-IR show that pyromorphite is a known mixed phosphate and arsenate complex, Pb5(PO4,AsO4)3Cl. A series of bands are resolved in the infrared spectrum of pyromorphite at 1017, 961 and 894 cm(-1). The first two bands are assigned to nu(3), the antisymmetric stretching mode and the third band at 894 cm(-1) is the symmetric mode of the phosphate ion. Similar patterns are shown by other pyromorphite samples with variation in intensity. The cause of multiple bands near 800 cm(-1) is the result of isomorphic substitution of (PO4)(3-) by (AsO4)(3-) and the spectral pattern relates to the chemical variability in pyromorphite. The presence of (AsO4)(3-) is significant in certain pyromorphite samples.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号