首页 | 本学科首页   官方微博 | 高级检索  
     


On Oseen flows for large Reynolds numbers
Authors:Jonathan Gustafsson  Bartosz Protas
Affiliation:1. School of Computational Engineering and Science, McMaster University, Hamilton, ON, Canada
2. Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada
Abstract:This investigation offers a detailed analysis of solutions to the two-dimensional Oseen problem in the exterior of an obstacle for large Reynolds numbers. It is motivated by mathematical results highlighting the important role played by the Oseen flows in characterizing the asymptotic structure of steady solutions to the Navier–Stokes problem at large distances from the obstacle. We compute solutions of the Oseen problem based on the series representation discovered by Tomotika and Aoi (Q J Mech Appl Math 3:140–161, 1950) where the expansion coefficients are determined numerically. Since the resulting algebraic problem suffers from very poor conditioning, the solution process involves the use of very high arithmetic precision. The effect of different numerical parameters on the accuracy of the computed solutions is studied in detail. While the corresponding inviscid problem admits many different solutions, we show that the inviscid flow proposed by Stewartson (Philos Mag 1:345–354, 1956) is the limit that the viscous Oseen flows converge to as Re → ∞. We also draw some comparisons with the steady Navier–Stokes flows for large Reynolds numbers.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号