首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of a method and a system to determine heat transfer and properties of fluids in the absence of temperature measurements and a modified Fourier Equation
Authors:Prof. Dr.-Ing. W. Leidenfrost  W. E. Kennedy
Affiliation:(1) Purdue University, Lafayette, Indiana;(2) At School of Mechanical Engineering of Purdue, USA
Abstract:The technique to determine by capacitance measurements heat transfer, thermal transport and dielectric properties of fluids introduced recently is now analyzed for a simple system of spherical geometry. The temperature distribution under programmed heat input to a fluid annulus between solid walls is computed by finite difference method for the determination of the capacitance time function of the arrangement. A system of heavy wall structure and heated long enough will produce a capacitance-time curve which is a function of thermal conductivity only. Thermal diffusivity is of influence in thin wall systems. The capacitance change of a heavy wall arrangement is related to the thermal conductivity of the test fluid by a modified Fourier equation. This equation describes the heat flow through the fluid layer but includes the thermal expansion of the solid walls. The change of geometry with Delta T is therefore accounted for. For other multicomposite structures the Fourier equation must be further modified by including the thermal expansion of all materials of the structure and possibly also their compressibilities.
Zusammenfassung Die kürzlich eingeführte Methode der Bestimmung von Wärmeübergang, thermischen Transport und dielektrischen Größen mittels Kapazitäts-Zeit-Messung wird analysiert für ein einfaches kugeliges System. Die Temperaturverteilung in der Flüssigkeit im Kugelspalt zwischen zwei festen Körpern wird für konstante Wärmezufuhr von außen mittels der Differenzmethode bestimmt und daraus die Kapazitäts-Zeit-Funktion ermittelt. Es wird gezeigt, daß die Kapazitäts-Zeit-Kurve nur eine Funktion der Wärmeleitzahl ist für den Fall dickwandiger Anordnungen. Für dünnwandige Systeme wird sie auch abhängig von der Temperaturleitzahl. Es wird eine modifizierte Fourier-Gleichung eingeführt, die den Wärmetransport durch die Flüssigkeit beschreibt, dabei aber die Änderung der Geometrie der Schicht berücksichtigt, die sich wegen der thermischen Ausdehnung der festen Wände bei der Einstellung der Temperaturdifferenz ergibt. Für andere mehrschichtige Körper muß die Fourier-Gleichung weiterhin modifiziert werden durch Berücksichtigung der thermischen Ausdehnungskoeffizienten aller beteiligten Materialien und möglicherweise auch ihrer Kompressibilitäten.

Nomenclature A average cross-sectional area of fluid layer - A coefficient matrix - B matrix defined by Eq. (20) - B0 geometric constant of fluid layer (A/L) at reference temperature - C capacitance of arrangement - Ci, Cr capacitance of layer of fluid i and reference fluid at temperature T - 
$$C_0 , C_{0_i } , C_{0_r } $$
capacitances at reference temperature - CH, cl specific heats of outer and inner wall - FA...FE constants defined in Eqs. (13 ... 17) - L thickness of fluid layer - MH, ML mass of outer and inner wall - P power input to the system - R constant defined by Eq. (24) - T temperature - Tref reference temperature - T (O, t), T (L, t) temperatures of outer and inner wall at time t - Tin, Ti+0n+m temperatures at location i and time n (m=number ofdelta t's; 0=number of deltax's) - deltaT temperature difference across fluid layer - deltaT apparent temperature difference - delta th,delta Tl temperature increases of outer and inner wall - delta Tmax temperature change of system from one to another thermal equilibrium condition a thermal diffusivity - k, ki, kr thermal qonductivity of fluids and of fluid i and reference fluid - q heat flow through fluid layer - rh,rl inner radius of outer wall and outer radius of inner wall - rOH,rOL radii at reference temperature - t time - delta t time interval - x coordinate - ¯x vector of unknown Tin+1 - Deltax length intervalGreek symbols beta linear thermal expansion coefficient - betaH, betaL linear thermal expansion coefficient of materials of outer and inner wall - epsi dielectric constant - epsii, epsiref dielectric constant of fluid i and reference fluid - epsi0 permittivity of free space - lambda multiplyer of conduction Eq. (7) in finite difference form - tau time needed to establish quasi-steady state conditions in the system heated by a constant power inputIn honor of Prof. Dr. E. Schmidt to his 80th Birthday.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号