Abstract: | The oxidative behaviour of moxifloxacin was studied at a glassy carbon electrode in different buffer systems using cyclic, differential pulse, and Osteryoung square-wave voltammetry. The oxidation process was shown to be irreversible over the entire pH range studied (2.0–10.0) and was diffusion-controlled. The methods were performed in Britton–Robinson buffer and the corresponding calibration graphs were constructed and statistical data were evaluated. When the proposed methods were applied at pH 6.0 linearity was achieved from 4.4×10–7 to 1.0×10–5 mol L–1. Applicability to tablets and human plasma analysis was illustrated. Furthermore, a high-performance liquid chromatographic method with diode-array detection was developed. A calibration graph was established from 4.0×10–6 to 5.0×10–5 mol L–1 moxifloxacin. The described methods were successfully employed with high precision and accuracy for estimation of the total drug content of human plasma and for pharmaceutical dosage forms of moxifloxacin. |