首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low-energy antimony implantation in silicon
Authors:W K Chu  R H Kastl  P C Murley
Institution:IBM Data Systems Division , East Fishkill , Hopewell Junction, New York, 12533, USA
Abstract:Abstract

Antimony is known to be a donor in silicon, Low-energy implantations of Sb in Si produce very shallow profiles which have many device applications. Gibbons et al. 1 calulated the projected ranges of Sb ion-implanted in Si, using the LSS (Lindhard, Scharff, and Schiott) method. Oetzmann et al. 2 measured projected ranges and range straggling for several heavy ions in Si, Al, and Ge, using high-resolution backscattering; in the energy region of interest to us, e = 10?2 to 10?1, their results were about 30% higher than those reported by Gibbons et al. In the study reported here, we implanted 5 × 1014 Sb/cm2 in Si at 5–60 keV, measured the resulting depth distribution by secondary ion mass spectrometry, and checked the measurements by backscattering. Our results showed the experimental projected ranges to be about halfway between those reported in the earlier studies. The discrepancies between theoretical calculations and experimental results are due not to the electronic stopping cross section, which is negligible in the range of interest here, but to the nuclear stopping power. Using a modified nuclear scattering potential given by Wilson et al.,3 we calculated the projected range distribution according to the method described by Winterbon.4 Our results are in very good agreement with the experimental measurements.
Keywords:Photoionization  Hole burning  Photovoltaic effect  Li2Ge7O15:Cr3+  LiNbO3:Cr3+  CaS:Eu2+
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号