首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydroxyl radical is the active species in photochemical DNA strand scission by bis(peroxo)vanadium(V) phenanthroline
Authors:Sam Mui  Hwang Jung H  Chanfreau Guillaume  Abu-Omar Mahdi M
Institution:Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
Abstract:Bis(peroxo)vanadium(V) complexes are widely investigated as anticancer agents. They exert their antitumor and cyctotoxic effects through inhibition of tyrosine phosphatases and DNA cleavage, respectively. The latter process remains poorly understood. The mechanism of DNA cleavage by NH(4)(phen)V(O)(eta(2)-O(2))(2)] (phen = 1,10-phenanthroline) was investigated. Kinetic studies on DNA cleavage revealed that the complex is a single-strand nicking agent with no specificity. EPR experiments using 2,2,6,6-tetramethyl-4-piperidone (TMP) and 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) as spin-traps for singlet oxygen and hydroxyl radical, respectively, implicated hydroxyl radical production upon photodecomposition of bis(peroxo)vanadium(V). This was corroborated by benzoate inhibition of DNA strand scission and stoichiometric oxidation of 2-propanol to acetone upon irradiation of bis(peroxo)vanadium(V) phenanthroline. High-resolution polyacrylamide gel analysis of the vanadium cleavage reaction and Fe(II)EDTA](2)(-)/H(2)O(2) resulted in comigration of "ladder" pattern bands, which superimposed when both reactions were run on the same lane. These findings identify hydroxyl radical produced from the photooxidation of the peroxo ligand on vanadium as the active species in DNA cleavage.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号