首页 | 本学科首页   官方微博 | 高级检索  
     


Development and experimental validation of a continuum micromechanics model for the elasticity of wood
Authors:Karin Hofstetter   Christian Hellmich  Josef Eberhardsteiner
Affiliation:Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), A-1040 Wien (Vienna), Austria
Abstract:This contribution covers the development and validation of a microelastic model for wood, based on a four-step homogenization scheme. At a length scale of several tens of nanometers, hemicellulose, lignin, and water are intimately mixed, and build up a polymer (polycrystal-type) network. At a length scale of around one micron, fiberlike aggregates of crystalline and amorphous cellulose are embedded in an contiguous polymer matrix, constituting the so-called cell wall material. At a length scale of about one hundred microns, the material softwood is defined, comprising cylindrical pores (lumen) in the cell wall material of the preceding homogenization step. Finally, at a length scale of several millimeters, hardwood comprises larger cylindrical pores (vessels) embedded in the softwood-type material homogenized before. Model validation rests on statistically and physically independent experiments: The macroscopic stiffness values (of hardwood or softwood) predicted by the micromechanical model on the basis of tissue-independent (‘universal’) phase stiffness properties of hemicellulose, amorphous cellulose, crystalline cellulose, lignin, and water (experimental set I) for tissue-specific composition data (experimental set IIb) are compared to corresponding experimentally determined tissue-specific stiffness values (experimental set IIa).
Keywords:Wood   Hierarchical organization   Chemical composition   Stiffness   Continuum micromechanics   Experimental validation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号