Effect of tip mass on frequency response and sensitivity of AFM cantilever in liquid |
| |
Affiliation: | 1. Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;2. School of Mechanical Engineering, University of Adelaide, South Australia 5005, Australia;1. Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China;2. Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074, China |
| |
Abstract: | The effect of tip mass on the frequency response and sensitivity of atomic force microscope (AFM) cantilever in the liquid environment is investigated. For this purpose, using Euler–Bernoulli beam theory and considering tip mass and hydrodynamic functions in a liquid environment, an expression for the resonance frequencies of AFM cantilever in liquid is derived. Then, based on this expression, the effect of the surface contact stiffness on the flexural mode of a rectangular AFM cantilever in fluid is investigated and compared with the case where the AFM cantilever operates in the air. The results show that in contrast with an air environment, the tip mass has no significant impact on the resonance frequency and sensitivity of the AFM cantilever in the liquid. Hence, analysis of AFM behaviour in liquid environment by neglecting the tip mass is logical. |
| |
Keywords: | Tip mass Cantilever Sensitivity Frequency response Liquid |
本文献已被 ScienceDirect 等数据库收录! |
|