首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nuclear magnetic resonance and dielectric noise study of spectral densities and correlation functions in the glass forming monoalcohol 2-ethyl-1-hexanol
Authors:Schildmann S  Reiser A  Gainaru R  Gainaru C  Böhmer R
Institution:Fakult?t für Physik, Technische Universit?t Dortmund, 44221 Dortmund, Germany. sebastian@e3.physik.tu-dortmund.de
Abstract:The spectral densities related to various relaxation processes of the glass former 2-ethyl-1-hexanol (2E1H), a monohydroxy alcohol, are probed using several nuclear magnetic resonance (NMR) experiments as well as via dielectric noise spectroscopy (DNS). On the basis of the spectral density relating to voltage fluctuations, i.e., without the application of external electrical fields, DNS enables the detection of the structural relaxation and of the prominent, about two decades slower Debye process. The NMR-detected spectral density, sensitive to the orientational fluctuations of the hydroxyl deuteron, also reveals dynamics slower than the structural relaxation, but not as slow as the Debye process. Rotational and translational correlation functions of 2E1H are probed using stimulated-echo NMR techniques which could only resolve the structural dynamics or faster processes. The experimental results are discussed with reference to models that were suggested to describe the dynamics in supercooled alcohols.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号