首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Grid approximation of singularly perturbed parabolic reaction-diffusion equations on large domains with respect to the space and time variables
Authors:G I Shishkin
Institution:(1) Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia
Abstract:In an unbounded (with respect to x and t) domain (and in domains that can be arbitrarily large), an initial-boundary value problem for singularly perturbed parabolic reaction-diffusion equations with the perturbation parameter ε2 multiplying the higher order derivative is considered. The parameter ε takes arbitrary values in the half-open interval (0, 1]. To solve this problem, difference schemes on grids with an infinite number of nodes (formal difference schemes) are constructed that converge ε-uniformly in the entire unbounded domain. To construct these schemes, the classical grid approximations of the problem on the grids that are refined in the boundary layer are used. Schemes on grids with a finite number of nodes (constructive difference schemes) are also constructed for the problem under examination. These schemes converge for fixed values of ε in the prescribed bounded subdomains that can expand as the number of grid points increases. As ε → 0, the accuracy of the solution provided by such schemes generally deteriorates and the size of the subdomains decreases. Using the condensing grid method, constructive difference schemes that converge ε-uniformly are constructed. In these schemes, the approximation accuracy and the size of the prescribed subdomains (where the schemes are convergent) are independent of ε and the subdomains may expand as the number of nodes in the underlying grids increases.
Keywords:singularly perturbed parabolic reaction-diffusion equation  grid approximation  formal and constructive difference schemes  ε  -uniform convergence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号