首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces
Authors:Taehun Lee  Lin Liu
Institution:Department of Mechanical Engineering, City College of City University of New York, New York, NY 10031, USA
Abstract:A lattice Boltzmann equation (LBE) method for incompressible binary fluids is proposed to model the contact line dynamics on partially wetting surfaces. Intermolecular interactions between a wall and fluids are represented by the inclusion of the cubic wall energy in the expression of the total free energy. The proposed boundary conditions eliminate the parasitic currents in the vicinity of the contact line. The LBE method is applied to micron-scale drop impact on dry surfaces, which is commonly encountered in drop-on-demand inkjet applications. For comparison with the existing experimental results H. Dong, W.W. Carr, D.G. Bucknall, J.F. Morris, Temporally-resolved inkjet drop impaction on surfaces, AIChE J. 53 (2007) 2606–2617], computations are performed in the range of equilibrium contact angles from 31° to 107° for a fixed density ratio of 842, viscosity ratio of 51, Ohnesorge number (Oh) of 0.015, and two Weber numbers (We) of 13 and 103.
Keywords:Lattice Boltzmann method  Contact line dynamics  Parasitic currents  Drop impact
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号