首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stability of a surface-charged viscous jet in an electric field
Authors:V Ya Shkadov  A A Shutov
Abstract:The stability of a surface-charged cylindrical jet in a longitudinal uniform electric field with respect to capillary pertubations is investigated in the linear approximation. The evolution of both axisymmetric and azimuthal-periodic perturbations is analyzed. In the latter case the first two modes among the azimuthal wavenumbers — bending and Bohr — are considered. Axisymmetric and bending instabilities lead to the transverse disintegration of the jet into individual drops and the Bohr mode to the longitudinal separation of the input jet into two parts. It is found that the axisymmetric and bending instabilities, respectively, can be completely suppressed and significantly attenuated by means of an external longitudinal field. In this case the role of the Bohr mode becomes more important leading under certain conditions to longitudinal longwave jet splitting. Events which can be interpreted as manifestations of longitudinal partition of the jet (dumbbell-like cross-section, branching nodes) are observed in experiments with evaporating polymer-solution microjets. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 29–40, March–April, 1998. The work was carried out with support from the Russian Foundation for Fundamental Research (project No. 97-01-00153).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号