首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Free-stream turbulence effects on vortex-induced vibration of two side-by-side elastic cylinders
Authors:XQ Wang  RMC So  W-C Xie  J Zhu
Institution:aDepartment of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, HKSAR, PRC;bDepartment of Civil and Environmental Engineering, Faculty of Engineering, University of Waterloo, Waterloo, Ont., Canada
Abstract:The effect of free-stream turbulence on vortex-induced vibration of two side-by-side elastic cylinders in a cross-flow was investigated experimentally. A turbulence generation grid was used to generate turbulent incoming flow with turbulence intensity around 10%. Cylinder displacements in the transverse direction at cylinder mid-span were measured in the reduced velocity range 1.45<Ur0<12.08, corresponding to a range of Reynolds number (Re), based on the mean free-stream velocity and the diameter of the cylinder, between Re=5000–41 000. The focus of the study is on the regime of biased gap flow, where two cylinders with pitch ratio (T/D) varying from 1.17 to 1.90 are considered. Results show that the free-stream turbulence effect is to enhance the vortex-induced force, thus to restore the large-amplitude vibration associated with the lock-in resonance. However, the enhancement is significant at a different Strouhal number (St) for different pitch ratios. When the spacing between two cylinders is relatively small (1.17<T/D<1.50), the enhancement is significant at St≈0.1. When the spacing is increased, the Strouhal number at which the enhancement is significant shifts to St≈0.16. This enlarges the range of reduced velocity to be concerned. An energy analysis showed that free-stream turbulence feeds energy to the cylinder at multiple frequencies of vortex shedding. Therefore, the lock-in region is still of main concern when the approach flow is turbulent.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号