首页 | 本学科首页   官方微博 | 高级检索  
     


Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition
Authors:Qi Li  Yunqing Liu  Yujie Shang  Qiong Zhang  Fei Yan
Affiliation:Department of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130012, China
Abstract:Recently, emotional electroencephalography (EEG) has been of great importance in brain–computer interfaces, and it is more urgent to realize automatic emotion recognition. The EEG signal has the disadvantages of being non-smooth, non-linear, stochastic, and susceptible to background noise. Additionally, EEG signal processing network models have the disadvantages of a large number of parameters and long training time. To address the above issues, a novel model is presented in this paper. Initially, a deep sparse autoencoder network (DSAE) was used to remove redundant information from the EEG signal and reconstruct its underlying features. Further, combining a convolutional neural network (CNN) with long short-term memory (LSTM) can extract relevant features from task-related features, mine the correlation between the 32 channels of the EEG signal, and integrate contextual information from these frames. The proposed DSAE + CNN + LSTM (DCRNN) model was experimented with on the public dataset DEAP. The classification accuracies of valence and arousal reached 76.70% and 81.43%, respectively. Meanwhile, we conducted experiments with other comparative methods to further demonstrate the effectiveness of the DCRNN method.
Keywords:EEG   emotion recognition   deep sparse autoencoder   CNN   LSTM
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号