首页 | 本学科首页   官方微博 | 高级检索  
     


DNA separation at a liquid-solid interface
Authors:Seo Young-Soo  Samuilov Vladimir A  Sokolov Jonathan  Rafailovich Miriam  Tinland Bernard  Kim Jaeseung  Chu Benjamin
Affiliation:Department of Materials Science and Engineering, SUNY at Stony Brook, NY 11794, USA.
Abstract:We demonstrate that it is possible to separate a broad band of DNA on a solid substrate without topological obstacles. The mobility was found to scale with molecular size (N) as N(-0.25), while the resolution scaled as N(0.75) indicating that diffusivity on this substrate was minimal. By varying the buffer concentration we were able to show that the mobility for a given chain length scaled with the persistent length (p) as p(1/2). This could be shown to be related to the Gaussian conformation of the chains adsorbed on the surface. A two-dimensional corrugated surface of nonporous silica beads was produced using a self-assembling process at the air/water interface. Even though the surface corrugations were comparable to persistence length we show that they do not affect the mobility, indicating that surface friction rather than topological constraints are the predominant mechanism of separation on a surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号