Pore spanning lipid bilayers on mesoporous silica having varying pore size |
| |
Authors: | Claesson Maria Frost Rickard Svedhem Sofia Andersson Martin |
| |
Affiliation: | Department of Chemical and Biological Engineering, Chalmers University of Technology, Go?teborg, Sweden. |
| |
Abstract: | Synthetic lipid bilayers have similar properties as cell membranes and have been shown to be of great use in the development of novel biomimicry devices. In this study, lipid bilayer formation on mesoporous silica of varying pore size, 2, 4, and 6 nm, has been investigated using quartz crystal microbalance with dissipation monitoring (QCM-D), fluorescent recovery after photo bleaching (FRAP), and atomic force microscopy (AFM). The results show that pore-spanning lipid bilayers were successfully formed regardless of pore size. However, the mechanism of the bilayer formation was dependent on the pore size, and lower surface coverages of adsorbed lipid vesicles were required on the surface having the smallest pores. A similar trend was observed for the lateral diffusion coefficient (D) of fluorescently labeled lipid molecules in the membrane, which was lowest on the surface having the smallest pores and increased with the pore size. All of the pore size dependent observations are suggested to be due to the hydrophilicity of the surface, which decreases with increased pore size. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|