首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Anodic behavior of gold in acid thiourea solutions: A cyclic voltammetry and quartz microgravimetry study
Authors:O N Shevtsova  R Yu Bek  A G Zelinskii  A A Vais
Institution:(1) Institute of Solid-State Chemistry and Mechanochemistry, Siberian Division, Russian Academy of Sciences, ul. Kutateladze 18, Novosibirsk, 630128, Russia
Abstract:It is shown that at potentials E < 0.5 V (NHE) gold undergoes practically no dissolution in thiourea solutions containing no catalytically active species. The dissolution at a perceptible rate (> 100 μA cm?2) starts at E ≥ 0.65 V, with the primary process being the oxidation of thiourea, which gives rise a current peak at E ? 1.0 V. The thiourea oxidation at E ≥ 1.1 produces the appearance of catalytically active species, which drastically accelerate the gold dissolution process in the potential region extending from a steady-state value to 0.6 V, where the current efficiency for gold approaches 100% and a peak emerges at E ? 0.55 V. The peak’s height is commensurate with the value of the limiting diffusion current associated with the ligand supply. The species in question make no discernible impact on the thiourea oxidation process. Formamidine disulfide, which forms during the anodic oxidation of thiourea or which is added in solution on purpose, exerts no noticeable catalytic influence on the anodic gold dissolution. The catalytically active species is presumably the S2? ion, product of decomposition and deep oxidation of thiourea and formamidine disulfide. Indeed, adding sulfide ions in solution has a strong catalytic effect on the gold dissolution, whose character is identical to that of the effect exerted by products of anodic oxidation of thiourea at E ≥ 1.1 V μA cm?2.
Keywords:dissolution  gold  thiourea  formamidine disulfide  electrocatalysis  sulfide ion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号