首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The hopping motion of the self-trapped exciton in NaCl
Authors:K Tanimura  N Itoh
Institution:Department of Crystalline Materials Science, Faculty of Engineering, Nagoya University, Nagoya 464, Japan
Abstract:The decay kinetics and the yield of the π luminescence from the lowest triplet state of the self-trapped exciton have been studied in NaCl containing Li+ ions. It is found that the π luminescence band which is observed at 6K is replaced by a luminescence band peaked at 3.34 eV above 77K. The 3.34 eV luminescence band is ascribed to the recombination of the relaxed exciton trapped by a Li+ ion, (Vke)Li. The decay of the π luminescence induced by an electron pulse and the time change of the luminescence from (Vke)Li are explained in terms of the characteristic equation of the diffusion-limited reaction of the lowest triplet self-trapped excitons with the Li+ ions. From the analysis of the dependence of the decay rate of the π luminescence on temperature and on the Li+ concentration, we found the diffusion constant D of the lowest triplet self-trapped exciton in NaCl to be given by D = D0e?EakT with D0 = 2.13 × 10?3cm2s and E0 = 0.13 eV. The present result can be regarded as the first clear experimental evidence for the hopping diffusion of the self-trapped exciton in alkali halides. The obtained values of Ea and D0 are discussed using the small polaron theory. The effect of the anharmonicity on the hopping of the self-trapped excitons is suggested to be significant.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号