首页 | 本学科首页   官方微博 | 高级检索  
     检索      


From wigner’s supermultiplet theory to quantum chromodynamics
Authors:O W Greenberg
Institution:1. Center for Theoretical Physics, Department of Physics, University of Maryland, 20742-4111, College Park, MD, USA
Abstract:The breadth of Eugene Wigner’s interests and contributions is amazing and humbling. At different times in his life he did seminal work in areas as diverse as pure mathematics and chemical engineering. His seminal research in physics is, of course, the best known. In this talk I first describe Wigner’s supermultiplet theory of 1936 using the approximate symmetry of the nuclear Hamiltonian under a combined spin-isospin symmetry to describe the spectroscopy of stable nuclei up to about the nucleus molybdenum. I then show how Wigner’s ideas of 1936 have had far reaching and unexpected implications: his ideas led to the discovery of the color degree of freedom for quarks and to the symmetric quark model of baryons which is the basis of baryon spectroscopy. I conclude by pointing out that the color degree of freedom, made into a local symmetry using Yang-Mills theory, leads to the gauge theory of color, quantum chromodynamics, which is our present theory of the strong interactions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号