Synthesis and characterization of graphene oxide‐based hybrid ligand and its metal complexes: Highly efficient sensor and catalytic properties |
| |
Authors: | Muharrem Karabörk R. Maher Zubair Serhan Uruş Mehmet Tümer |
| |
Affiliation: | Chemistry Department, K. Maras Sütcü Imam University, Turkey |
| |
Abstract: | A new graphene oxide‐based hybrid material (HL) and its Co(II), Cu(II) and Ni(II) metal complexes were prepared. Firstly, graphene oxide and (3‐aminopropyl)trimethoxysilane were reacted to give graphene oxide–3‐(aminopropyl)trimethoxysilane (GO‐APTMS) hybrid material. After that, hybrid material HL was synthesized from the reaction of GO‐APTMS and 2,6‐diformyl‐4‐methylphenol. Finally, Co(II), Cu(II) and Ni(II) complexes of HL were obtained. All the materials were characterized using various techniques. The chemosensor properties of HL were investigated against Na+, K+, Cd2+, Co2+, Cu2+, Hg2+, Ni2+, Zn2+, Al3+, Cr3+, Fe3+ and Mn3+ ions and it was found that HL has selective chemosensing to Fe3+ ion. All the graphene oxide‐supported complexes were used as heterogeneous catalysts in the oxidation of 2‐methylnaphthalene (2MN) to 2‐methyl‐1,4‐naphthoquinone (vitamin K3, menadione) in the presence of hydrogen peroxide, acetic acid and sulfuric acid. The Cu(II) complex showed good catalytic properties compared to the literature. The selectivity of 2MN to vitamin K3 was 60.23% with 99.75% conversion using the Cu(II) complex. |
| |
Keywords: | catalyst graphene oxide menadione sensor vitamin K3 |
|
|