首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trimethylglycine complexes with carboxylic acids and HF: solvation by a polar aprotic solvent
Authors:Guo Jing  Koeppe Benjamin  Tolstoy Peter M
Institution:Institute of Chemistry and Biochemistry, Free University of Berlin, Germany.
Abstract:A series of strong H-bonded complexes of trimethylglycine, also known as betaine, with acetic, chloroacetic, dichloroacetic, trifluoroacetic and hydrofluoric acids as well as the homo-conjugated cation of betaine with trifluoroacetate as the counteranion were investigated by low-temperature (120-160 K) liquid-state NMR spectroscopy using CDF(3)/CDF(2)Cl mixture as the solvent. The temperature dependencies of (1)H NMR chemical shifts are analyzed in terms of the solvent-solute interactions. The experimental data are explained assuming the combined action of two main effects. Firstly, the solvent ordering around the negatively charged OHX region of the complex (X = O, F) at low temperatures, which leads to a contraction and symmetrisation of the H-bond; this effect dominates for the homo-conjugated cation of betaine. Secondly, at low temperatures structures with a larger dipole moment are preferentially stabilized, an effect which dominates for the neutral betaine-acid complexes. The way this second contribution affects the H-bond geometry seems to depend on the proton position. For the Be(+)COO(-)···HOOCCH(3) complex (Be = (CH(3))(3)NCH(2)-) the proton displaces towards the hydrogen bond center (H-bond symmetrisation, O···O contraction). In contrast, for the Be(+)COOH···(-)OOCCF(3) complex the proton shifts further away from the center, closer to the betaine moiety (H-bond asymmetrisation, O···O elongation). Hydrogen bond geometries and their changes upon lowering the temperature were estimated using previously published H-bond correlations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号