首页 | 本学科首页   官方微博 | 高级检索  
     检索      

三维网状结构Ru/石墨烯/碳纳米管复合材料作为锂氧电池正极催化剂的性能
引用本文:尹艳红,李珂,董红玉,金城,肖星路,高怡琮,杨书廷.三维网状结构Ru/石墨烯/碳纳米管复合材料作为锂氧电池正极催化剂的性能[J].高等学校化学学报,2019,40(6):1271.
作者姓名:尹艳红  李珂  董红玉  金城  肖星路  高怡琮  杨书廷
作者单位:河南师范大学化学化工学院,动力电源及关键材料国家-地方联合工程实验室,动力电源及关键材料河南省协同创新中心,新乡453007;河南师范大学化学化工学院,动力电源及关键材料国家-地方联合工程实验室,动力电源及关键材料河南省协同创新中心,新乡453007;河南师范大学化学化工学院,动力电源及关键材料国家-地方联合工程实验室,动力电源及关键材料河南省协同创新中心,新乡453007;河南师范大学化学化工学院,动力电源及关键材料国家-地方联合工程实验室,动力电源及关键材料河南省协同创新中心,新乡453007;河南师范大学化学化工学院,动力电源及关键材料国家-地方联合工程实验室,动力电源及关键材料河南省协同创新中心,新乡453007;河南师范大学化学化工学院,动力电源及关键材料国家-地方联合工程实验室,动力电源及关键材料河南省协同创新中心,新乡453007;河南师范大学化学化工学院,动力电源及关键材料国家-地方联合工程实验室,动力电源及关键材料河南省协同创新中心,新乡453007
基金项目:国家自然科学基金青年科学基金(批准号: 51502082)、 河南省科技攻关项目(批准号: 182102210079)和河南省科技创新人才计划项目(批准号: 174100510015)资助.
摘    要:利用物理浸渍和冷冻干燥等方法制备了具有三维网状结构的Ru/石墨烯/碳纳米管复合材料, 对该材料的结构、 形貌及电化学性能进行了表征和研究. 结果表明, 当Ru含量为30%, 热处理温度为500 ℃时, 材料的催化性能最优. 将其用作锂氧电池的正极催化剂, 以50 mA/g电流密度进行首次充放电时, 放电比容量约为5800 mA·h/g, 且在放电比容量为4000 mA·h/g以内时, 其极化电压仅为0.9 V; 当以50 mA/g电流密度进行恒容(500 mA·h/g)充放电循环时, 在极化电压低于1.1 V时, 仍能稳定循环12周. 复合材料电催化机理的研究结果表明, 三维网状结构不仅提供了O2和Li+的传输通道, 更增加了放电产物Li2O2的储存场所. 金属钌纳米粒子的负载既增加了复合材料的反应活性位点, 又促进了放电产物Li2O2的分解.

关 键 词:锂氧电池  催化剂  复合材料  极化电压
收稿时间:2018-10-19

Performance of Ru/graphene/carbon Nanotube Composites with Three-dimensional Network Structure as Positive Electrode Catalysts for Lithium Oxygen Batteries†
YIN Yanhong,LI Ke,DONG Hongyu,JIN Cheng,XIAO Xinglu,GAO Yicong,YANG Shuting.Performance of Ru/graphene/carbon Nanotube Composites with Three-dimensional Network Structure as Positive Electrode Catalysts for Lithium Oxygen Batteries†[J].Chemical Research In Chinese Universities,2019,40(6):1271.
Authors:YIN Yanhong  LI Ke  DONG Hongyu  JIN Cheng  XIAO Xinglu  GAO Yicong  YANG Shuting
Institution:College of Chemistry and Chemical Engineering,National and Local Joint Engineering Laboratory of Motive Power and Key Materials, Power Supply and Key Materials Henan Collaborative Innovation Center, Henan Normal University, Xinxiang 453007, China
Abstract:Ru/graphene/carbon nanotube composites with three-dimensional network structure were prepared by physical impregnation and freeze drying. When the Ru content was 30%(mass fraction) and the heat treatment temperature was 500 ℃, the catalytic performance of the composite was optimal. When the composite was used as a cathode catalyst for lithium oxygen batteries, it exhibited excellent battery performance. When the first charge and discharge were performed at a current density of 50 mA/g, the discharge capacity density was about 5800 mA·h/g, and when the discharge capacity density was within 4000 mA·h/g, the polarization voltage was only was 0.9 V; when a constant-capacitance(500 mA·h/g) charge-discharge cycle was performed at a current density of 50 mA/g, the battery was stable for 12 cycles even when the polarization voltage was lower than 1.1 V. The three-dimensional network structure not only provided a transmission channel for O2 and Li+, but also increased the storage location of the discharge product Li2O2. The loading of the metal ruthenium nanoparticles not only increased the reactive site of the composite, but also promoted the decomposition of the discharge product Li2O2.
Keywords:Lithium-oxygen battery  Catalyst  Composite material  Polarization voltage  
本文献已被 万方数据 等数据库收录!
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号