首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental realization of a new transistor
Authors:Chen  J Yang  C-H Wilson  RA
Institution:Dept. of Electr. Eng., Maryland Univ., College Park, MD;
Abstract:The authors report on the fabrication and characteristics of a unipolar, three-terminal, resonant-tunneling transistor. The operating principle of this new transistor is based on the fact that the quantum mechanical resonant-tunneling probability of hot electrons between the emitter and the collector is switched almost completely on and off, when either the base or the collector bias is swept. The emitter injects hot electrons to the second lowest subband of a thin (100 Å in this work) GaAs quantum well. Subsequently, the hot electrons will either resonantly tunnel to the collector, or relax to the lowest subband and contribute to the base current. As a result of resonant transmission, at 77 K the current-voltage characteristics of the transistor display negative differential resistance with extremely large (4691) peak-to-valley ratio. Furthermore, when biased near resonance, a maximum DC current gain of ~1.2 and a maximum AC current gain of ~11.9 were observed. The first use of a new `tunneling-in and tunneling-out' scheme in contacting a thin quantum well is also demonstrated
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号