首页 | 本学科首页   官方微博 | 高级检索  
     


Ring-opening reaction of phosphorus-bridged [1]ferrocenophane via ring slippage from eta(5)- to eta(1)-Cp
Authors:Mizuta Tsutomu  Imamura Yuki  Miyoshi Katsuhiko
Affiliation:Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
Abstract:A reaction mechanism was investigated for a ring-opening reaction of RP(E)-bridged [1]ferrocenophane, where RP(E) = PhP(S) (3a), PhP (3b), and MesP (3c) (Mes = 2,4,6-trimethylphenyl). Irradiation of UV-vis light in the presence of an excess amount of P(OMe)(3) transformed 3a to [Fe(PhP(S)(eta(5)-C(5)H(4))(eta(1)-C(5)H(4)))(P(OMe)(3))(2)] (4a), in which one of the two cyclopentadienyl (Cp) rings of 3a changed its coordination mode from eta(5) to eta(1) and vacant coordination sites thus formed on the iron center were occupied by two P(OMe)(3) ligands. The molecular structure of 4a was determined by X-ray analysis, in which eta(1)-Cp adopted a 1-Fe-2-P-1,3-cyclopentadiene structure. Under the same reaction conditions, 3b and 3c also gave similar ring-slipped products 4b and 4c, respectively. Photolysis of 3a using more strongly coordinating PMe(3) in place of P(OMe)(3) led to complete dissociation of a Cp ligand from the iron center to form [Fe(PhP(S)(eta(5)-C(5)H(4))(C(5)H(4)))(PMe(3))(3)] (5). The formation of the ring-slipped and -dissociated products on the photolysis of 3 strongly supports the view that photolytic ring-opening polymerization of 3 proceeds via an unprecedented Fe-Cp bond cleavage mechanism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号