首页 | 本学科首页   官方微博 | 高级检索  
     

海杂波背景下的目标检测新方法
引用本文:姜斌,王宏强,黎湘,郭桂蓉. 海杂波背景下的目标检测新方法[J]. 物理学报, 2006, 55(8): 3985-3991
作者姓名:姜斌  王宏强  黎湘  郭桂蓉
作者单位:国防科技大学空间电子信息技术研究所,长沙 410073
摘    要:提出了一种基于分形布朗运动模型的S波段雷达海杂波分形维数提取方法.分析了基于记忆库混沌时间序列预测方法,引入一种改进核函数的支持向量机分类器.在此基础上,提出了一种新的海杂波背景下目标检测方法.应用S波段雷达实测海杂波数据,计算得到了该信号的分形维数与Lyapunov指数,验证了S波段雷达海杂波的混沌分形特性.仿真实验结果验证了该方法具有较强的检测能力和抗杂波性能.关键词:分形布朗运动分形维数记忆库预测方法支持向量机分类器

关 键 词:分形布朗运动  分形维数  记忆库预测方法  支持向量机分类器
文章编号:1000-3290/2006/55(08)/3985-07
收稿时间:2005-12-19
修稿时间:2005-12-192006-04-21

A novel method of target detection based on the sea clutter
Jiang Bin,Wang Hong-Qiang,Li Xiang,Guo Gui-Rong. A novel method of target detection based on the sea clutter[J]. Acta Physica Sinica, 2006, 55(8): 3985-3991
Authors:Jiang Bin  Wang Hong-Qiang  Li Xiang  Guo Gui-Rong
Affiliation:Research Institute of Space Electronics Information Technology, National University of Defense Technology, Changsha 410073, China
Abstract:Adopting the model of fractional Brownian motion, this paper presents the method of deducing Hurst exponent based on the observed sea clutter of S-band radar. Secondly the prediction technology of chaotic time series is studied based on memory-based predictor. Furthermore, adopting the method of support vector machine classifiers of the improved radial basis kernel function, this paper proposes a novel method of target detection based on the sea clutter. Thirdly, on the basis of observed sea clutter of S-band radar, the fractal dimension and the largest Lyapunov exponent are obtained, which proves its chaos and fractal characteristic. Finally, the computer simulation is carried out and the results prove the effective detection performance and noise tolerance.
Keywords:fractional Brownian motion   fractal dimension   memory-based predictor   support vector machine classifiers
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号