首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A numerical investigation of new film cooling hole configuration at the leading edge of asymmetrical turbine blade: part A
Authors:Mustapha Benabed
Institution:1. Aeronautical Laboratory and Propulsive Systems, Faculté de Génie-Mécanique, Université des Sciences et de la Technologie d’Oran, B.P. 1505, El-Mnouar, Oran, Algeria
Abstract:The focus of the first part of this numerical study is to investigate the effects of two new configurations: (1) slot with cylindrical end and (2) slot with median cylindrical hole, generated by the combination between two film cooling configurations: cylindrical hole and uniform slot. Computational results are presented for a row of coolant injection holes on each side of an asymmetrical turbine blade model near the leading edge. For each configuration, three values of the radius are taken: R = 0.4, R = 0.8 and R = 1.2. The six cases simulations, thus obtained, are conducted for the same density ratio of 1.0 and the same inlet plenum pressure. A new parameter, Rc, is defined to measure the rate of blade coverage by the film cooling. Results show that, at the pressure side; for the two new configurations, the six studied cases exceed the case baseline in cooling effectiveness term with the best result obtained for R = 0.8 (case 2). For the suction side, only configurations with R = 0.4 (cases 1 and 4) provide an increase of film effectiveness compared to the case baseline. The following configuration: Cases 1 or 4 at the suction side and case 2 at the pressure side, gets the best thermal protection because of their higher coverage and strong cooling effectiveness.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号