首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Verification of DFT-predicted hydrogen storage capacity of VC3H3 complex using molecular dynamics simulations
Authors:Wadnerkar Nitin  Kalamse Vijayanand  Lee Shyi-Long  Chaudhari Ajay
Institution:School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra 431606, India.
Abstract:Density functional theory (DFT) and Fourth‐order Möller–Plesset (MP4) perturbation theory calculations are performed to examine the possibility of hydrogen storage in V‐capped VC3H3 complex. Stability of bare and H2 molecules adsorbed V‐capped VC3H3 complex is verified using DFT and MP4 method. Thermo‐chemistry calculations are carried out to estimate the Gibbs free corrected averaged H2 adsorption energy which reveals whether H2 adsorption on V‐capped VC3H3 complex is energetically favorable, at different temperatures. We use different exchange and correlation functionals employed in DFT to see their effect on H2 adsorption energy. Molecular dynamic (MD) simulations are performed to confirm whether this complex adsorbs H2 molecules at a finite temperature. We elucidate the correlation between H2 adsorption energy obtained from density functional calculations and retaining number of H2 molecules on VC3H3 complex during MDs simulations at various temperatures. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011
Keywords:density functional theory  hydrogen storage  organometallic compound  molecular dynamics simulations
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号