首页 | 本学科首页   官方微博 | 高级检索  
     


Non-isothermal flow of polymer melts in a curved tube
Authors:E. Závadský  J. Karniš  V. Pechoč
Affiliation:(1) Ch. des Dents-du-Midi 28, CH-1860 Aigle;(2) Research Institute for Man-made Fibres, CS-05921 Svit, Czechoslovakia
Abstract:The results of a numerical study (using finite differences) of heat transfer in polymer melt flow is presented. The rheological behaviour of the melt is described by a temperature-dependent power-law model. The curved tube wall is assumed to be at constant temperature. Convective and viscous dissipation terms are included in the energy equation. Velocity, temperature and viscosity profiles, Nusselt numbers, bulk temperatures, etc. are presented for a variety of flow conditions.Br 
$$eta _0 bar upsilon ^2 /lambda t_0 $$
— Brinkman number - c specific heat, J/kg K - De 
$$2r_p bar upsilon varrho /(eta _0 exp ( - kt_0 )(r_p /r_c )^{1/2} )$$
— Dean number - E dimensionless apparent viscosity, eq. (14d) - G dimensionless shear rate, eq. (19) - k parameter of the power-law model, °C–1, eq. (7) - 
$$dot m$$
mass flow rate, kg/s - m0 parameter of the power-law model, Pa · sn, eq. (7) - n parameter of the power-law model, eq. (7) - Nu 2rpagr/lambda — Nusselt number, eqs. (28,31) - p pressure, Pa - Pe 
$$bar upsilon r_p varrho c/lambda $$
— Péclet number - P(partp/partphiv)/rc — pressure gradient, Pa/m - 
$$dot Q_d $$
dissipated energy, W, eq. (29) - 
$$dot Q_t $$
total energy, W, eq. (30) - r radial coordinate, m - rc radius of tube-curvature, m, fig. 1 - rp radius of tube, m, fig. 1 - rt variable, m, eq. (6) - R dimensionless radial coordinate, eq. (14a) - Rc dimensionlessrc, eq. (14a) - Rt dimensionlessrt, eq. (14a) - t temperature, °C - 
$$bar t$$
bulk temperature, °C, eq. (27) - t0 inlet temperature of the melt, °C - tw tube wall temperature, °C - T dimensionless temperature, eq. (14c) - Tw dimensionless tube wall temperature - T dimensionless bulk temperature - u1 variable, s–1, eq. (4) - u2 variable, s–1, eq. (5) - U1 dimensionlessu1, eq. (18) - U2 dimensionlessu2, eq. (18) - v velocity inphiv-direction, m/s - 
$$bar upsilon $$
average velocity of the melt, m/s - V dimensionlessv, eq. (14b) - 
$$bar V$$
dimensionless
$$bar upsilon $$
, eq. (15) - z rcphiv — centre length of the tube, m - Z dimensionlessz, eq. (14e) - agr heat transfer coefficient, W/m2 K - 
$$dot gamma $$
shear rate, s–1, eq. (8) - 
$$dot gamma _0 $$

$$bar upsilon /r_p $$
— shear rate, s–1 - eegr apparent viscosity, Pa · s, eq. (7) - eegr0 
$$m_0 dot gamma _0^{n - 1} $$
— apparent viscosity, Pa · s - theta angular coordinate, rad, fig. 1 - lambda thermal conductivity, W/m K - rhov melt density, kg/m3 - phiv axial coordinate, rad, fig. 1 - Delta rate of strain tensor, s–1, eq. (8) - (—Deltap) pressure drop, Pa
Keywords:Melt flow  heat transfer  curved tube
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号