Spin-orbit coupling in oxygen containing diradicals |
| |
Authors: | Boris F. Minaev Hans gren |
| |
Affiliation: | a Institute of Physics and Measurement Technology, University of Linköping S-58183 Linköping Sweden |
| |
Abstract: | Intermediate diradicals which occur in the Paterno-Büchi photocycloaddition and in the Norrish type I photoreactions have been calculated taking into account the spin-orbit coupling (SOC) between the singlet (S) and triplet (T) states. Reaction paths for the photocycloaddition of formaldehyde to ethene and the diradical products of the -cleavage of cyclohexanone have been optimized by the MNDO CI method for a number of different singlet and triplet states. SOC integrals are calculated by an effective one-electron approximation. Intermediate diradicals in the Paterno-Büchi reaction and the SOC effects are also studied ab initio with CAS SCF geometry optimization in a TZV basis set. Both methods predict a large SOC matrix element between the S and T states in the course of the C-C attack, while the SOC integral is two orders of magnitude smaller for the diradical produced in the C-O attack. In the Norrish type I photoreaction the oxygen atom also produces some nonzero contribution to the SOC integral which governs intersystem crossing in a ·C-C· diradical. For the diradicals produced by the -cleavage of cyclohexanone a vibronic interaction is responsible for the SOC mixing between the lowest S and T states. The importance of one-center versus two-center SOC contributions in diradicals is briefly discussed. |
| |
Keywords: | Diradicals Spin-orbit coupling Alpha-cleavage Paterno-Büchi photocycloaddition |
本文献已被 ScienceDirect 等数据库收录! |