首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Density functional theory/time-dependent DFT studies on the structures, trend in DNA-binding affinities, and spectral properties of complexes [Ru(bpy)2(p-R-pip)]2+ (R = -OH, -CH3, -H, -NO2)
Authors:Li Jun  Xu Lian-Cai  Chen Jin-Can  Zheng Kang-Cheng  Ji Liang-Nian
Institution:School of Chemistry and Chemical Engineering/The Key Laboratory of Gene Engineering of Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
Abstract:Studies on the electronic structures and trend in DNA-binding affinities of a series of Ru(II) complexes Ru(bpy)2(p-R-pip)]2+ (bpy = 2,2-bipyridine; pip = 2-phenylimidazo4,5-f] 1,10]-phenanthroline; R = -OH, -CH3, -H, -NO2) 1-4 have been carried out, using the density functional theory (DFT) at the B3LYP/LanL2DZ level. The electronic absorption spectra of these complexes were also investigated using time-dependent DFT (TDDFT) at the B3LYP//LanL2DZ/6-31G level. The computational results show that the substituents on the parent ligand (pip) have a significant effect on the electronic structures of the complexes, in particular, on the energies of the lowest unoccupied molecular orbital (LUMO) and near some unoccupied molecular orbitals (LUMO+x, x = 1-4). With the increase in electron-withdrawing ability of the substituent in this series, the LUMO+x (x = 0-4) energies of the complexes are substantially reduced in order, for example, epsilon(LUMO)(1) approximately epsilon(LUMO)(2) > epsilon(LUMO)(3) > epsilon(LUMO)(4), whereas the pi-component populations of the LUMO+x (x = 0-4) are not substantially different. Combining the consideration of the bigger steric hindrance of complex 2, the trend in DNA-binding affinities (K(b)) of the complexes, that is, K(b)(2) < K(b)(1) < K(b)(3) < K(b)(4) can be reasonably explained. In addition, the experimental singlet metal-to-ligand charge transfer ((1)MLCT) spectra of these complexes can be well simulated and discussed by the TDDFT calculations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号