首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics of phosphodiester cleavage by differently generated cerium(IV) hydroxo species in neutral solutions
Authors:Maldonado Ana L  Yatsimirsky Anatoly K
Institution:Facultad de Química, Universidad Nacional Autónoma de México, 04510, México D.F., México.
Abstract:Neutral aqueous solutions of cerium ammonium nitrate obtained by dilution of their acetonitrile stock solution with imidazole buffer show high catalytic activity in the hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) and better reproducibility than other similar systems, but suffer from low stability. The kinetics of catalytic hydrolysis is second-order in Ce(IV), independent of pH in the range 5-8 and tentatively involves the Ce2(OH)7+ species as the active form. Attempts to stabilize the active species by different types of added ligands failed, but the use of Ce(IV) complexes pre-synthesized in an organic solvent with potentially stabilizing ligands as precursors of active hydroxo species appeared to be more successful. Three new Ce(IV) complexes, Ce(Phen)2O(NO3)2], Ce(tris)O(NO3)(OH)] and Ce(BTP)2(NO3)4].2H2O (BTP = bis-tris propane, 1,3-bistris(hydroxymethyl)methylamino]propane), were prepared by reacting cerium ammonium nitrate with the respective ligands in acetonitrile and were characterized by analytical and spectroscopic techniques. Aqueous solutions of these complexes undergo rapid hydrolysis producing nearly neutral polynuclear Ce(IV) oxo/hydroxo species with high catalytic activity in BNPP hydrolysis. Potentiometric titrations of the solutions obtained from the complex with BTP revealed the formation of Ce4(OH)15+ species at pH > 7, which are protonated affording Ce4(OH)14(2+) and then Ce4(OH)13(3+) on a decrease in pH from 7 to 5. The catalytic activity increases strongly on going to species with a higher positive charge. The reaction mechanism involves first- and second-order in catalyst paths as well as intermediate complex formation with the substrate for higher charged species.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号