首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of nanoscale defects to planar cracks in a brittle solid
Authors:Ashfaq Adnan
Institution:School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, USA
Abstract:Fracture of a solid is a highly multiscale process that associates atomic scale bond breaking with macroscopic crack propagation, and the process can be dramatically influenced by the presence of defects in materials. In a nanomaterial, defect formation energy decreases with the reduction of material size, and therefore, the role of defects in crack formation and subsequent crack growth in such materials may not be understood from the classical laws of fracture mechanism. In this study, we investigated the crack formation process of a defective (with missing atoms) nanostructured material (NaCl) using a series of molecular dynamics (MD) simulations. It was demonstrated that simple defects in the form of several missing atoms in the material could develop into a planar crack. Subsequently, MD simulations on failures of nanosized NaCl with pre-defined planar atomistic cracks of two different lengths under prescribed tensile displacement loads were performed. These failure loads were then applied on the equivalent continuum models, separately, to evaluate the associated fracture toughness values using the finite element analysis. For small cracks, the fracture toughness thus obtained is cracksize dependent and the corresponding critical energy release rate is significantly smaller than Griffith’s theoretical value. Explanation for this discrepancy between LEFM and the atomistic model was attempted.
Keywords:Fracture mechanisms  Fracture toughness  Crack  Nanoscales
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号