首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of In-substitution on the structure and magnetic properties of multi-doped YIG ferrites with low saturation magnetizations
Authors:Cuijing GuoWei Zhang  Rongjin JiYanwei Zeng
Affiliation:State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing University of Technology, New Model Road #5, Nanjing 210009, PR China
Abstract:Multi-doped YIG ferrites {Y1.7Gd0.5Ca0.8}[Fe2−xInx](Fe2.15V0.4Mn0.05Al0.4)O12 (x=0, 0.3, 0.6, 0.7, 0.8 and 0.9) with low saturation magnetizations (4πMs=400-600 G at 298 K) were prepared by a conventional ceramic technology and the effects of In3+-substitution on their structures and magnetic properties were systematically investigated using XRD, SEM and VSM. It has been found that as-synthesized powders and sintered ferrites showed a single-phase of garnet structure with a cell parameter (a) that increased linearly with increase in In3+ concentration from x=0 up to 0.9. Apparent relative densities of sintered samples were all over 98%, but no remarkable influences of In3+-substitution were observed by SEM on the refinement of crystal grains and the enhancement of sintering of ferrites. In addition, the Curie temperature Tc decreased almost linearly as In3+concentration increased, while the corresponding saturation magnetization at room temperature presented a variation characterized by a gradual increase first and then a rapid plunge. On the basis of quantitative analysis of XRD data and the theory on super-exchange interactions, it has been established that the incorporated In3+ ions via doping were exclusively located at the sites with octahedral coordinations in the crystal structure and the aforementioned magnetic properties can be simply attributed to weakening super-exchange interactions between neighboring magnetic ions through oxygen ions due to the “dilution effect” of added non-magnetic In3+ ions.
Keywords:Multi-doped YIG ferrite   Low saturation magnetization   In3+-substitution   Crystal structure   Magnetic property
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号