首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In vitro study of magnetic nanoparticles as the implant for implant assisted magnetic drug targeting
Authors:Jan O MangualMisael O Avilés  Armin D EbnerJames A Ritter
Institution:Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
Abstract:Magnetic nanoparticle (MNP) seeds were studied in vitro for use as an implant in implant assisted-magnetic drug targeting (IA-MDT). The magnetite seeds were captured in a porous polymer, mimicking capillary tissue, with an external magnetic field (70 mT) and then used subsequently to capture magnetic drug carrier particles (MDCPs) (0.87 μm diameter) with the same magnetic field. The effects of the MNP seed diameter (10, 50 and 100 nm), MNP seed concentration (0.25-2.0 mg/mL), and fluid velocity (0.03-0.15 cm/s) on the capture efficiency (CE) of both the MNP seeds and the MDCPs were studied. The CE of the 10 nm MNP seeds was never more than 30%, while those of the 50 and 100 nm MNP seeds was always greater than 80% and in many cases exceeded 90%. Only the MNP seed concentration affected its CE. The 10 nm MNP seeds did not increase the MDCP CE over that obtained in the absence of the MNP seeds, while the 50 and 100 nm MNP seeds increased significantly, typically by more than a factor of two. The 50 and 100 nm MNP seeds also exhibited similar abilities to capture the MDCPs, with the MDCP CE always increasing with decreasing fluid velocity and generally increasing with increasing MNP seed concentration. The MNP seed size, magnetic properties, and capacity to self-agglomerate and form clusters were key properties that make them a viable implant in IA-MDT.
Keywords:Magnetic nanoparticles  MNP  Drug delivery  Implant assisted magnetic drug targeting  Magnetic drug carrier particles  MDCP  Magnetite
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号