首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Routing in grid graphs by cutting planes
Authors:Martin Grötschel  Alexander Martin  Robert Weismantel
Institution:(1) Konrad-Zuse-Zentrum, Heilbronner Str. 10, 10711 Berlin-Wilmersdorf, Germany
Abstract:In this paper we study the following problem, which we call the weighted routing problem. Let be given a graphG = (V, E) with non-negative edge weightsw e isin Ropf+ and letN,N ge 1, be a list of node sets. The weighted routing problem consists in finding mutually disjoint edge setsS 1,...,S N such that, for eachk isin {1, ...,N}, the subgraph (V(S k),S k) contains an s, t]-path for alls, t isin T k and the sum of the weights of the edge sets is minimal. Our motivation for studying this problem arises from the routing problem in VLSI-design, where given sets of points have to be connected by wires. We consider the weighted routing problem from a polyhedral point of view. We define an appropriate polyhedron and try to (partially) describe this polyhedron by means of inequalities. We describe our separation algorithms for some of the presented classes of inequalities. Based on these separation routines we have implemented a branch and cut algorithm. Our algorithm is applicable to an important subclass of routing problems arising in VLSI-design, namely to switchbox routing problems where the underlying graph is a grid graph and the list of node sets is located on the outer face of the grid. We report on our computational experience with this class of problem instances.
Keywords:Routing in VLSI-design  Switchbox Routing  Steiner Tree  Steiner Tree Packing  Cutting Plane Algorithm
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号