首页 | 本学科首页   官方微博 | 高级检索  
     


An unconstrained minimization method for solving low-rank SDP relaxations of the maxcut problem
Authors:Luigi Grippo  Laura Palagi  Veronica Piccialli
Affiliation:1. Dipartimento di Informatica e Sistemistica ??A. Ruberti??, La Sapienza Universit?? di Roma, via Ariosto, 25, Rome, Italy
2. Dipartimento di Ingegneria dell??Impresa, Universit?? degli Studi di Roma Tor Vergata, via del Politecnico, 1, Rome, Italy
Abstract:In this paper we consider low-rank semidefinite programming (LRSDP) relaxations of combinatorial quadratic problems that are equivalent to the maxcut problem. Using the Gramian representation of a positive semidefinite matrix, the LRSDP problem can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function with quadratic equality constraints. For the solution of this problem we propose a continuously differentiable exact merit function that exploits the special structure of the constraints and we use this function to define an efficient and globally convergent algorithm. Finally, we test our code on an extended set of instances of the maxcut problem and we report comparisons with other existing codes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号