首页 | 本学科首页   官方微博 | 高级检索  
     检索      


De novo refolding and aggregation of insulin in a nonaqueous environment: an inside out protein remake
Authors:Fulara Aleksandra  Wojcik Sławomir  Loksztejn Anna  Dzwolak Wojciech
Institution:Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland.
Abstract:While thermodynamic penalties associated with protein-water interactions are the key driving force of folding, perturbed hydration of destabilized protein molecules may trigger aggregation, which in vivo often causes cellular and histological damage. Here we show, that the denatured state of an alpha-helical protein, insulin, converts to a non-native beta-sheet-rich structure upon de novo "refolding" in an anhydrous environment. The beta-pleated conformer precipitates from solutions of DMSO-denatured insulin upon dilution with chloroform. DMSO destroys hydrogen bond network of the native protein acting as a strong acceptor of main chain hydrogen bonds. Upon the addition of chloroform, which is a weak hydrogen bond donor per se, competitive hydrogen bonds between DMSO and chloroform are formed. This leads to the release of unfolded insulin molecules. In the absence of water, the imminent saturation of polypeptide's dandling hydrogen bonds does not produce the native and predominantly alpha-helical state but a beta-sheet-rich structure, which is morphologically and spectrally distinct from insulin amyloid fibrils. Unlike insulin fibrils, the beta-sheet conformer is metastable and refolds spontaneously to the native form in an aqueous environment. This implies that "folding" in the absence of water results in inefficient burial of hydrophobic side-chains, and thermodynamic frustration at the water-protein interface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号