首页 | 本学科首页   官方微博 | 高级检索  
     


A foam film propagating in a confined geometry: Analysis via the viscous froth model
Authors:P. Grassia  G. Montes-Atenas  L. Lue  T. E. Green
Affiliation:(1) CEAS, University of Manchester, Sackville St, 88, M60 1QD Manchester, UK
Abstract:A single film (typical of a film in a foam) moving in a confined geometry (i.e. confined between closely spaced top and bottom plates) is analysed via the viscous froth model. In the first instance the film is considered to be straight (as viewed from above the top plate) but is not flat. Instead it is curved (with a circular arc cross-section) in the direction across the confining plates. This curvature leads to a maximal possible steady propagation velocity for the film, which is characterised by the curved film meeting the top and bottom plates tangentially. Next the film is considered to propagate in a channel (i.e. between top and bottom plates and sidewalls, with the sidewall separation exceeding that of the top and bottom plates). The film is now curved along as well as across the top and bottom plates. Curvature along the plates arises from viscous drag forces on the channel sidewall boundaries. The maximum steady propagation velocity is unchanged, but can now also be associated with films meeting channel sidewalls tangentially, a situation which should be readily observable if the film is viewed from above the top plate. Observed from above, however, the film need not appear as an arc of a circle. Instead the film may be relatively straight along much of its length, with curvature pushed into boundary layers at the sidewalls.
Keywords:83.80.Iz Emulsions and foams  82.70.Rr Aerosols and foams  83.10.Bb Kinematics of deformation and flow
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号