首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and properties of compressed dihydride complexes of iridium: theoretical and spectroscopic investigations
Authors:Gelabert Ricard  Moreno Miquel  Lluch José M  Lledós Agustí  Pons Vincent  Heinekey D Michael
Affiliation:Departament de Química, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
Abstract:Reaction of [Cp*Ir(P-P)Cl][B(C6F5)4] (P-P = bisdimethydiphosphinomethane (dmpm), bisdiphenyldiphosphinomethane (dppm)) with [Et3Si][B(C6F5)4] in methylene chloride under 1 atm of hydrogen gas affords the dicationic compressed dihydride complexes [Cp*Ir(P-P)H2][B(C6F5)4]2. These dicationic complexes are highly acidic and are very readily deprotonated to the corresponding monohydride cations. When the preparative reaction is carried out under HD gas, the hydride resonance exhibits JHD = 7-9 Hz, depending upon the temperature of observation, with higher values of JHD observed at higher temperatures. A thermally labile rhodium analogue, [CpRh(dmpm)(H2)][B(C6F5)4]2, was prepared similarly. A sample prepared with HD gas gave JHD = 31 Hz and J(HRh) = 31 Hz, allowing the Rh complex to be identified as a dihydrogen complex. Quantum dynamics calculations on a density functional theory (DFT) potential energy surface have been used to explore the structure of the Ir complexes, with particular emphasis on the nature of the potential energy surface governing the interaction between the two hydride ligands and the Ir center.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号