首页 | 本学科首页   官方微博 | 高级检索  
     

Stability of Ag@SiO_2 core–shell particles in conditions of photocatalytic overall water-splitting
摘    要:Core–shell nanoparticles containing plasmonic metals(Ag or Au) have been frequently reported to enhance performance of photo-electrochemical(PEC) devices. However, the stability of these particles in water-splitting conditions is usually not addressed. In this study we demonstrate that Ag@SiO_2 core–shell particles are instable in the acidic conditions in which WO_3-based PEC cells typically operate, Ag in the core being prone to oxidation, even if the SiO_2 shell has a thickness in the order of 10 nm. This is evident from in situ voltammetry studies of several anode composites. Similar to the results of the PEC experiments, the Ag@SiO_2 core–shell particles are instable in slurry-based, Pt/ZnO induced photocatalytic water-splitting. This was evidenced by in situ photodeposition of Ag nanoparticles on the Pt-loaded ZnO catalyst, observed in TEM micrographs obtained after reaction. We explain the instability of Ag@SiO_2 by OH-radical induced oxidation of Ag, yielding dissolved Ag+. Our results imply that a decrease in shell permeability for OH-radicals is necessary to obtain stable, Ag-based plasmonic entities in photo-electrochemical and photocatalytic water splitting.

收稿时间:2016-09-28
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号