首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Enhanced hydrogen production activity over BiO_X–TiO_2 under solar irradiation:Improved charge transfer through bismuth oxide clusters
摘    要:A series of titania nanoparticles and nanotubes deposited with various quantities of bismuth(Bi) were prepared via sol-gel and hydrothermal methods, respectively. They were then characterized using X-ray diffraction spectroscopy(XRD), X-ray photo electron spectroscopy(XPS), UV–Vis diffused reflectance spectra(DRS), photoluminescence spectra(PLS), transmission electron microscopy(TEM), energy dispersive analysis of X-rays(EDAX), and BET surface analysis. These catalysts were employed for the photocatalytic production of hydrogen from a mixture of pure water and glycerol under solar light irradiation. The presence of the Bi~((3+x)+) species was found to play a vital role in enhancing activity while minimizing electron hole recombination(relative to bare TiO_2). The nanotubes exhibited better activity than the nanoparticles of Bi-deposited TiO_2, showing the significance of the morphology; however, photocatalytic activity is predominantly dependent on the deposition of bismuth. The activity increased by approximately an order of magnitude at the optimum concentration of Bi deposited over TiO_2(2 wt%). The presence of the Bi~((3+x)+) species played a vital role in minimizing electron hole recombination, resulting in higher activity compared to bare TiO_2.

收稿时间:14 September 2016

Enhanced hydrogen production activity over BiOXTiO2 under solar irradiation: Improved charge transfer through bismuth oxide clusters
Institution:1. Department of Civil & Environmental Engineering, Hanyang University, 222, WangsimniRo, Seoul 133-791, Republic of Korea;2. Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500 607, India;3. Sarojini Naidu Vanitha Mahavidyala, Osmania University, Hyderabad 500 001, India;4. Program in Environmental Science and Engineering, University of Texas El Paso, El Paso, Texas 799038, USA
Abstract:A series of titania nanoparticles and nanotubes deposited with various quantities of bismuth (Bi) were prepared via sol-gel and hydrothermal methods, respectively. They were then characterized using X-ray diffraction spectroscopy (XRD), X-ray photo electron spectroscopy (XPS), UV–Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), and BET surface analysis. These catalysts were employed for the photocatalytic production of hydrogen from a mixture of pure water and glycerol under solar light irradiation. The presence of the Bi(3+x)+ species was found to play a vital role in enhancing activity while minimizing electron hole recombination (relative to bare TiO2). The nanotubes exhibited better activity than the nanoparticles of Bi-deposited TiO2, showing the significance of the morphology; however, photocatalytic activity is predominantly dependent on the deposition of bismuth. The activity increased by approximately an order of magnitude at the optimum concentration of Bi deposited over TiO2 (2 wt%). The presence of the Bi(3+x)+ species played a vital role in minimizing electron hole recombination, resulting in higher activity compared to bare TiO2.
Keywords:
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号