首页 | 本学科首页   官方微博 | 高级检索  
     


Bifunctionality of Cu/ZnO catalysts for alcohol-assisted low-temperature methanol synthesis from syngas:Effect of copper content
Affiliation:2. Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
Abstract:Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO_X catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction intermediate in this reaction, creating a different reaction pathway. The formation of crystalline phases and characteristic morphology of the co-precipitated precursors during the co-precipitation step were important factors in obtaining an efficient Cu/ZnO catalyst with a high dispersion of metallic copper,which is one of the main active sites for methanol synthesis. The acidic properties of the Cu/ZnO catalyst were also revealed as important factors, since alcohol esterification is considered the rate-limiting step in alcohol-assisted low-temperature methanol synthesis. As a consequence, bifunctionality of the Cu/ZnO catalyst such as metallic copper and acidic properties was required for this reaction. In this respect, the copper content(X) strongly affected the catalytic activity of the Cu/ZnO_X catalysts, and accordingly, the Cu/ZnO_0.5 catalyst with a high copper dispersion and sufficient acid sites exhibited the best catalytic performance in this reaction.
Keywords:
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号