首页 | 本学科首页   官方微博 | 高级检索  
     


The coherent scattering function of the reptation model: Simulations compared to theory
Authors:A.?Baumg?rtner,U.?Ebert,L.?Sch?fer  author-information"  >  author-information__contact u-icon-before"  >  mailto:lsphy@Theo-Phys.Uni-Essen.DE"   title="  lsphy@Theo-Phys.Uni-Essen.DE"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany;(2) Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands;(3) Universität Essen, Universitätsstr. 5, 45117 Essen, Germany
Abstract:We present results of Monte Carlo simulations measuring the coherent structure function of a chain moving through an ordered lattice of fixed topological obstacles. Our computer experiments use chains up to 320 beads and cover a large range of wave vectors and a time range exceeding the reptation time. For additional information we also measured the coherent structure function of internal pieces of the chain. We compare our results i) to the predictions of the primitive chain model, ii) to an approximate form resulting from Rouse motion in a coiled tube, and iii) to our recent evaluation of the full reptation model. i) The primitive chain model can fit the data for times $t gtrsim 20 T_2$, where T 2 is the Rouse time of the chain. Besides some phenomenological amplitude factor this fit involves the reptation time T 3 as a second fit parameter. For the chain lengths measured, the asymptotic behavior $T_3 sim N^3$ is not attained. ii) The model of Rouse motion in a tube, which we have criticized before on theoretical grounds, is shown to fail also on the purely phenomenological level. iii) Our evaluation of the full reptation model yields an excellent fit to the data for both total chains and internal pieces and for all wave vectors and all times, provided specific micro-structure effects of the MC dynamics are negligible. Such micro-structure effects show up for wave vectors of the order of the inverse segment size and enforce the introduction of some phenomenological, wave-vector-dependent prefactor. For the dynamics of the total chain our data analysis based on the full reptation model shows the importance of tube length fluctuations. Universal (Rouse-type) internal relaxation, however, is unimportant. It can be observed only in the form of the diffusive motion of a short central subchain in the tube. Finally, we present a fit formula which in a large range of wave vectors and chain lengths reproduces the numerical results of our theory for the scattering from the total chain.Received: 9 July 2003, Published online: 11 November 2003PACS: 83.10.Kn Reptation and tube theories - 82.35.Lr Physical properties of polymers - 83.10.Rs Computer simulation of molecular and particle dynamics
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号